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1 Introduction

This paper presents a method of decomposing free-response
ensemble data into modal components, while enabling fre-
quency, damping, and mode-shape estimation for generally
damped linear multi-degree-of-freedom systems. The method is
based on the state-variable model of a vibration system

The equations of motion for free vibrations are MX + Cx +
Kx = 0, where x is an n x 1 array of mass displacements, and
M, C, and K, are the n x n mass, damping, and stiffness matri-
ces. Defining a 2n x 1 state vector y? = [x”,x], and introducing
Mx — Mx = 0, yields unforced equations of motion of the form
Ay + By = 0, where A consists of 0 and C on the block diago-
nals, and M on the off-diagonal blocks, and B is block diagonal
with —M and K. Assuming a response of the form y = ¢ ¢, the
complex modes are obtained from the eigenvalue problem

A9 +Bo =0, (1)

which hass complex eigenvalues o and eigenvectors ¢ =

[vT',wT]T, where the w correspond to displacement modes. Real
and imaginary parts of o quantify the modal frequency and

damping. Our decomposition is aimed at estimating ¢ and .

2 Decomposition Strategy and Example

The decomposition uses the free-response state-variable en-
semble Y = [VIX7]7, where n-mass by N-sample X is a dis-
placement ensemble, and V = XD’ ~ X is an approximate ve-
locity ensemble made from an (N —2) x N matrix D of centered
finite differences. Thus V is n x (N —2), and so the first and last
columns of X are dropped so that Y has compatible partitions.

We then take the derivative W = YD? ~ Y, this time using
an (N —4) x (N —2) difference matrix D. The first and last time
samples of Y are then dropped so that the dimensions of Y and
W are the same. We form a correlation matrix R = YY? /N and
a nonsymmetric matrix N = YW’ /N.

The eigenvalue problem is then

oRy = Ny. (2)

The eigenvalues of (2) approximate the state-variable eigen-
values, containing information about damping and frequency.
The inverse of the modal matrix from equation (2) resembles the
complex linear normal modal matrix of equation (1).

As an example, we simulate a chain of eight unit masses
connected by unit springs, with a dashpot grounded to the eighth
mass, with 10-bit noise. Fig. 1 shows the modal frequencies and
damping from (1) and (2), and the third mode comparison.
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Figure 1. Modal frequency and damping (top) from equations (1) and

(2). Third mode from equations (1) and (2).



