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1 Introduction
This paper presents a method of decomposing free-response

ensemble data into modal components, while enabling fre-
quency, damping, and mode-shape estimation for generally
damped linear multi-degree-of-freedom systems. The method is
based on the state-variable model of a vibration system

The equations of motion for free vibrations are Mẍ + Cẋ +
Kx = 0, where x is an n× 1 array of mass displacements, and
M,C, and K, are the n× n mass, damping, and stiffness matri-
ces. Defining a 2n×1 state vector yT = [ẋT ,xT ], and introducing
Mẋ−Mẋ = 0, yields unforced equations of motion of the form
Aẏ + By = 0, where A consists of 0 and C on the block diago-
nals, and M on the off-diagonal blocks, and B is block diagonal
with −M and K. Assuming a response of the form y = eαtφ, the
complex modes are obtained from the eigenvalue problem

αAφ+Bφ = 0, (1)
which hass complex eigenvalues α and eigenvectors φ =
[vT ,wT ]T , where the w correspond to displacement modes. Real
and imaginary parts of α quantify the modal frequency and
damping. Our decomposition is aimed at estimating φ and α.

2 Decomposition Strategy and Example
The decomposition uses the free-response state-variable en-

semble Y = [VT ,XT ]T , where n-mass by N-sample X is a dis-
placement ensemble, and V = XDT ≈ Ẋ is an approximate ve-
locity ensemble made from an (N−2)×N matrix D of centered
finite differences. Thus V is n× (N−2), and so the first and last
columns of X are dropped so that Y has compatible partitions.

We then take the derivative W = YDT ≈ Ẏ, this time using
an (N−4)× (N−2) difference matrix D. The first and last time
samples of Y are then dropped so that the dimensions of Y and
W are the same. We form a correlation matrix R = YYT /N and
a nonsymmetric matrix N = YWT /N.

The eigenvalue problem is then
αRψ = Nψ. (2)

The eigenvalues of (2) approximate the state-variable eigen-
values, containing information about damping and frequency.
The inverse of the modal matrix from equation (2) resembles the
complex linear normal modal matrix of equation (1).

As an example, we simulate a chain of eight unit masses
connected by unit springs, with a dashpot grounded to the eighth
mass, with 10-bit noise. Fig. 1 shows the modal frequencies and
damping from (1) and (2), and the third mode comparison.

Figure 1. Modal frequency and damping (top) from equations (1) and
(2). Third mode from equations (1) and (2).
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